Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
Networks and Heterogeneous Media ; 17(3):401-425, 2022.
Article in English | Scopus | ID: covidwho-1875877

ABSTRACT

Uncertainty in data is certainly one of the main problems in epidemiology, as shown by the recent COVID-19 pandemic. The need for efficient methods capable of quantifying uncertainty in the mathematical model is essential in order to produce realistic scenarios of the spread of infection. In this paper, we introduce a bi-fidelity approach to quantify uncertainty in spatially dependent epidemic models. The approach is based on evaluating a high-fidelity model on a small number of samples properly selected from a large number of evaluations of a low-fidelity model. In particular, we will consider the class of multiscale transport models recently introduced in [13, 7] as the high-fidelity reference and use simple two-velocity discrete models for lowfidelity evaluations. Both models share the same diffusive behavior and are solved with ad-hoc asymptotic-preserving numerical discretizations. A series of numerical experiments confirm the validity of the approach. © 2021 Giulia Bertaglia, Liu Liu, Lorenzo Pareschi and Xueyu Zhu.

2.
Math Biosci Eng ; 18(5): 7028-7059, 2021 08 24.
Article in English | MEDLINE | ID: covidwho-1380010

ABSTRACT

In this paper we introduce a space-dependent multiscale model to describe the spatial spread of an infectious disease under uncertain data with particular interest in simulating the onset of the COVID-19 epidemic in Italy. While virus transmission is ruled by a SEIAR type compartmental model, within our approach the population is given by a sum of commuters moving on a extra-urban scale and non commuters interacting only on the smaller urban scale. A transport dynamics of the commuter population at large spatial scales, based on kinetic equations, is coupled with a diffusion model for non commuters at the urban scale. Thanks to a suitable scaling limit, the kinetic transport model used to describe the dynamics of commuters, within a given urban area coincides with the diffusion equations that characterize the movement of non-commuting individuals. Because of the high uncertainty in the data reported in the early phase of the epidemic, the presence of random inputs in both the initial data and the epidemic parameters is included in the model. A robust numerical method is designed to deal with the presence of multiple scales and the uncertainty quantification process. In our simulations, we considered a realistic geographical domain, describing the Lombardy region, in which the size of the cities, the number of infected individuals, the average number of daily commuters moving from one city to another, and the epidemic aspects are taken into account through a calibration of the model parameters based on the actual available data. The results show that the model is able to describe correctly the main features of the spatial expansion of the first wave of COVID-19 in northern Italy.


Subject(s)
COVID-19 , Cities , Disease Outbreaks , Humans , SARS-CoV-2 , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL